National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
On Finite Element Approximation of Flow Induced Vibration of Elastic Structure
Valášek, J. ; Sváček, P. ; Horáček, Jaromír
In this paper the fluid-structure interaction problem is studied on a simplified model of the human vocal fold. The problem is mathematically described and the arbitrary Lagrangian-Eulerian method is applied in order to treat the time dependent computational domain. The viscous incompressible fluid flow and linear elasticity models are considered. The fluid flow and the motion of elastic body is approximated with the aid of fininite element method. An attention is paid to the applied stabilization technique. The whole algorithm is implemented in an in-house developed solver. Numerical results are presented and the influence of different inlet boundary conditions is discused.
On numerical approximation of fluid-structure interactions of air flow with a model of vocal folds
Valášek, J. ; Horáček, Jaromír ; Sváček, P.
This paper deals with flow driven vibration of an elastic body. Our goal is to develop and mathematically describe a simplified model of the human vocal fold. The developed numerical schemes for viscous incompressible fluid flow in ALE formulation and the elastic body are implemented by two solvers, specific for each domain. The studied problem is coupled by Dirichlet-Neumann boundary conditions. Both solvers are based on the finite element method. Particularly, for the fluid model the crossgrid elements are used. Numerical results focus on the verification of the developed program.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.